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ABSTRACT

Analysts are frequently confronted with time-series data. A simple form is magnitude (or count)
and time frame, whether the data is number of e-mails sent, number of cell phones called, pur-
chases made by volume or cost, or a variety of other time-derived data. Studying the temporal
dimension of data allows analysts more opportunities to find relational ties and trends in data,
classify or group like activity, and even help narrow the search space of massively complex
and large datasets. This thesis presents a new approach called the Rule Based Intuition (RBI)
system that can evaluate time-series data by finding the best fitting rule, from a repository of
known rules, to quickly infer information about the data. This approach is most applicable for
analysts viewing large sets of data who wish to classify or correlate data from users’ temporal
activity.
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CHAPTER 1:
Introduction

Analysts are frequently confronted with time-series data. A simple form often encountered is
magnitude (or count) and time frame, whether the data is number of e-mails sent, number of
cell phones called, purchases made by volume or cost, or a variety of other time derived data.
Studying the temporal dimension of data allows analysts more opportunities to find relational
ties and trends in data, classify or group like activity, and even help narrow the search space of
massively complex and large datasets.

There are three basic methods of finding these patterns today. First, by hand—requiring heavy
human interaction. It is slow, but can be aided by software visualization tools. Second, su-
pervised learning—requiring both human and machine interaction. If done right, this approach
can combine the strengths of both human and machine. Third, fully automated—requiring no
human interaction. However, automatically generated rules can be nonsensical and of limited
value. As computer speeds increase, there is hope that someday computers might be able to
“think” like a human. While the idea of thinking machines is the goal of many good science
fiction books, the state of the art in artificial intelligence is well below the sentient mark and
looks to remain there for some time. That is why supervised learning methods are the most
practical and relevant for today’s data mining efforts.

This thesis presents a new supervised learning approach called the Rule Based Intuition (RBI)
system. The RBI methodology can evaluate time-series data by finding the best fitting rule,
from a repository of known rules, to quickly infer information about the data. Currently, the best
scientists can do is to optimize and combine the strengths of both human and computer to help
find the needed information. This concept is the idea behind RBI. The RBI method attempts
to maximize the best capabilities of both humans and machines. By using known temporal
patterns, analysts can combine the power and speed of computers with their own knowledge
to reduce the necessary search space, find relevant information, and identify necessary causal
relationships.

Finding temporal patterns is a very difficult problem, although it seems humans are good at
this type of pattern recognition. For example, when a large company with several thousand
personnel work overtime on a time critical project, the number of pizzas to be delivered to
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the company building drastically increases. This pattern is repeated several times throughout
the year. A competitor notices that immediately after pizza sales increase at the company, it
announces a hostile takeover. Imagine instead the company is a news agency and pizza orders
increase just before a major breaking news story or perhaps the company is the Pentagon and
this trend is a precursor to military operations. In 1990, Time magazine published “And Bomb
The Anchovies” [1], which correlates the purchases of pizza at the Pentagon to Iraq’s invasion
of Kuwait. If a local pizza delivery person can make these causal connections, what can trained
analysts with better tools do?1

To the author’s knowledge, the RBI methodology is a new application to data mining. In the
extensive article reviews in Chapter 2, no one has tried this approach to data discovery. The
RBI methodology is designed to be modular and extensible, as the rules can be developed and
stored in a database for shared access. The modular design is well suited for remote analysis and
allows knowledge experts to develop rules while lesser trained field collectors can automatically
correlate data with reach-back to the experts. This approach can be developed for analysts
viewing large sets of data or locally captured data providing data correlation of users temporal
activity.

Using the RBI methodology, this thesis investigates the following questions: If we already know
a temporal-spatial pattern, can we use what we know to help us find what we need? Is there a
fast, proven method to take our temporal knowledge, evaluate it, and apply it to data we have
not seen before to tell us something new? What DoD applications might this approach have?

To investigate these questions, this thesis presents the simple RBI framework written in the
Python programming language for creating temporal rules—which we define as simple boolean
functions which, when given an event located at a specific time, will return either True (mean-
ing that the event is covered by the rule) or False (meaning that the event is not covered by
the rule). Each rule is evaluated using a Poisson linear regression to determine which rule or
rules best fit each dataset. This framework is used to create 137 rules. This set of rules is then
used to process three data sets:

• The number of calls during the 1999 calendar year to the Automated Computer Time
Service (ACTS) operated by the National Institute of Standards and Technology [3].

1For a more thorough review of the history of and the application to military/intelligence security, read “Intro-
ducing Traffic Analysis” [2].
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• The number of calls each day to a bank call center in Israel during the 1999 calendar year
[4].

• The number of terrorist attacks on each day of the 1999 calendar year, as tracked by the
Global Terrorism Database.

RBI is a new temporal analysis approach and is applicable in several areas of research, intelli-
gence collection, information operations and user classification. Its simple modular design and
implementation lend itself as a new addition to the analysts tool set.

1.1 Motivation
Much of today’s event-based research is geared toward finding temporal patterns, identifying
change events, and discovering useful repeating patterns. Another facet of temporal data mining
is data discovery, the ability to find relevant information by looking at how and when events
occur and place them in the proper context.

The amount of digital data has increased exponentially in the last 20 years, causing an exploita-
tion of ubiquitous and interconnected information. As the sea of information grows, agencies
and businesses struggle to quickly find repeatable patterns to identify causal relations with sig-
nificant events of interest. Many current methods are computationally expensive, can only be
done in large database warehouses, or requires unique expertise to find the data and their con-
nections. The increased demands placed on analysts to find useful, relevant information make
automated information retrieval a requirement. Temporal analysis adds an additional capability
not widely available to analysts.

Many intelligence analysts have calendars with anniversary dates and workflow wheels col-
lected over years of dedicated observation. However, this is a very manually intensive pro-
cess. The data has been collected but there is no method to automate this extensive temporal
expertise—until now. The RBI methodology is the tool that can bridge this capability gap.

1.2 Temporal Analysis
In order to understand these concepts better, we should begin with a rudimentary understand-
ing of the requirements of temporal analysis and different philosophical and computational
approaches to the understanding of time. Any effective temporal systems should have the
following criteria:
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• Must allow for imprecise measurements of time (IMT). For example, computer generated
logs are often incorrect by hours or sometimes days. By looking specifically at just dates
and time, one might miss temporal relations.

• Must allow for imprecision in data (ID). One might not know the exact relationship be-
tween two events, but the system should be robust enough to understand or determine
partial relations.

• Conform to the right degree of time (RDT). Some events happen in years and others
happen in hours or even microseconds [5].

With these criteria in place, we will evaluate the different philosophical views of time and how
they relate to computational implementation. Then grade each of the approaches to the criteria
on a simple (+) or (-) system and provide capabilities and limitations of each approach. A (+)
sign indicates that the criterion is easy to implement in that view of time while a (-) indicates
not a failure of the view of time, but rather is difficult to implement in terms of complexity, cost
of time, or cost of resources.

1.2.1 Different Views of Time
There have been centuries of research on the topic of time from philosophical to modern com-
putational. Many brilliant minds have struggled with different aspects of time. Understanding
the different views of time and their origins is important. There are three fundamental views of
time: one is that time is moving or flowing with events in the past, present and future (Date/-

Time Line Systems); another is that time is based on causality or observed events (State Space

and Formal Methods Modeling); the third is that time is based on perceived instances defined
by relative observation (Relative Sequential Chaining). Each of these philosophical views of
time affect the method used in finding the data and are fundamental for analysts and computer
scientists to understand the capabilities and limitations of the different implementations of tem-
poral analysis.

Aristotle and Newton (Date/Time Line Systems) This view is often called the classical view
of time. Aristotle viewed time as a magnitude of movement. Newton framed time in the physi-
cal world much in the same way as Aristotle. One of Newton’s contributions to time is the idea
that time is flowing. An example would be as a man walks across the room, time flows as he
moves. In this view of time events are temporally anchored in the physical world. This view is
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similar to looking at a calendar and events happen on Wednesday or the event happened after
December 15, 1993. This is also called anchored time as it is set by a date or dates with the first
instance being the anchor.

For example, computer system clocks use an anchored time to determine the “time.” In this
case, time is a set of counts in seconds where t marks a count t = (1, 2, 3, . . . n) from an
arbitrary date January 1, 1970, at 00:00 in UNIX systems. In this example January 8, 2010,
at 08:06 is 1,262,937,960 seconds from January 1, 1970. The computer counts the seconds
from the anchored date and then displays local time of January 8, 2019. This can be thought of
outside of the observation or occurrence and is used in measure or relate events. This is helpful
when dealing with multiple timelines because they can be compared together easily.

This temporal view focuses on building timelines from instances of specific dates/times. This
approach is useful and easy for computers as the date/time becomes the reference. This is a good
model for work flow analysis (the study of when and in what order people do work). Workflow
is often connected to date/time like sunrise, sunset, and holidays. This date line approach is not
flexible as events may not be able to be set to a precise date. In order to make it more flexible,
these systems can define time in terms of a window, which adds complexity and ambiguity to
the system. This model seems to do a poor job of capturing relative temporal information when
window sizes overlap. This overlapping leads to greater complexity and less accuracy (Figure
1.1). The RBI system presented in this thesis uses this temporal view, but does not suffer from
this form of complexity, because the uncertainty of time is dealt with in the Poisson Regression
discussed in Chapter 3.

Kant (State Space and Formal Methods Modeling) Kant explains the “experience is possible
only through the representation of a necessary connection of perceptions.” [6] He summarized
all perceptions are grounded in time. He goes on further to say “all changes take place according
to the law of connection between cause and effect.” [6]

This type of reasoning can be viewed as a state machine, with time being the connector between
states. As a connector to causal events, each of the temporal ticks t happens when there is a
transition from state A (starting point of a man in a room) and state B (ending point across the
room). Every discrete effect is modeled as a state and every transition is a unit of time.

This temporal view is useful for simple problem solving tasks and does not suffer from issues
of complexity due to IMT or ID. However, this approach has limitations as it requires remem-
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bering, storing, and searching all previous states. An important note is that each t might be of
different length, which can lead to difficulties if state transitions of two events are happening
in parallel, as the temporal length of one state transition does not necessarily match the other
transition (Figure 1.2). As technology improves, there is hope that some of these shortcomings
can be surmounted.

Einstein (Relative Sequential Chaining) Einstein is famous for many ideas, but arguably, the
most important to science are his thoughts on relativity. He describes time as:

Every reference body... has its own particular time; unless we are told the reference
body to which the statement of time refers, there is no meaning in a statement of
the time of an event. [7]

Relative Sequential Chaining captures relative temporal information. However, as the amount
of temporal information grows, the system suffers from search and memory issues (Figure1.3).
Temporal logic helps elevate some of these challenges. Temporal logic is propositional logic
with a temporal twist. An example is, if A happens before B and B happens before C, then A
happens before C. James Allen defined thirteen basic possible temporal relationships and de-
veloped a transitive table, that is a fundamental cornerstone in relative temporal logic [5]. This
has been a growing field of interest especially in the business community as people and organi-
zations attempt to make personal interactions and market predictions more effective. Much of
this area of study focuses on individuals and their work and consumption activities.

1.2.2 A Historical Example
Perhaps one of the most famous uses of data line temporal analysis is that of John Snow, a
doctor in London in 1855. His work is unique in that it combined not only date line temporal
analysis but also spatial analysis with incredible effect. He describes the event as:

The most terrible outbreak of cholera which ever occurred in this kingdom, is
probably that which took place in Broad Street, Golden Square, and the adjoin-
ing streets, a few weeks ago. Within two hundred and fifty yards of the spot where
Cambridge Street joins Broad Street, there were upwards of five hundred fatal at-
tacks of cholera in ten days. The mortality in this limited area probably equals any
that was ever caused in this country, even by the plague; and it was much more sud-
den, as the greater number of cases terminated in a few hours. The mortality would
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undoubtedly have been much greater had it not been for the flight of the population
[8].

The method in which cholera was spread was not well understood, which is why John Snow’s
use of temporal and spatial mapping was so revolutionary. He correlated the possible water
contamination to a rain storm, which burst sewer piping and overflowed into kitchen drinking
water, which eventually contaminated a local water source. He organized the event by numbers
of dead and sick per day by location and combined them with drawings of public works piping
in the city. With this, he was quickly able to deduce the water source as the only possible source
of contamination and that is was confined to a single water pump. Upon physical investigation
of the water, he confirmed the contaminated source and had the handle removed from the pump.
His quick deduction of the outbreak to a single hand pump water supply, helped by temporal
and spatial analysis, ensured the removal of the hand pump handle and eliminated risk to others
around the pump. A few weeks after the handle was removed, he was able to return to the area
for further study.

Snow’s book uses a map (Figure 1.4) to mark the deaths of the people around the pump. Each
death is shown as a small black rectangle. He noted two areas that had fewer than expected
deaths. The workhouse had 535 people living in it at the time of the outbreak. Given the number
of death surrounding the work house, there should have been approximately 100 deaths; there
were only five. The brewery employed 70 people had no deaths. As it turned out, both areas had
other sources of water on their property. This is clear case where temporal and spatial pattern
recognition helped end a devastating epidemic.

1.2.3 Local Time
What time is it? Asked this question, most people would look at their watch, a cell phone, or a
nearby clock. Asked this question before the industrial age, people would answer by looking at
a water clock, a sundial, or the sun. All of these different techniques for learning the time report
local time—the time that people experience.

For thousands of years, local-observed time was the primary time reference. People rarely had
the need to synchronize time accurately. When they did, they were able to use bells, drums, or
later, clock towers.

7



Time Zones
Local time is entirely dependent upon Latitude; if one city is 3 degrees to the East of a second,
then it will take 12 minutes between the instant that the Sun passes through the zenith of the
first city and the time that the Sun passes through the zenith of the second. Still, this didn’t
present much of a problem to humanity until the development of bidirectional instantaneous
long-distance communications (necessitating two parties to synchronize their actions), and con-
gested single-track long-distance trains (necessitating that trains time their usage of the single
track resource).

Scottish-born Canadian inventor Sir Sandford Flemming suggested a worldwide system for
timezone in 1878. He proposed 24 meridians, each 15 degrees or one hour apart in longitude,
starting from Greenwich. The local time for each zone would be the time of the meridian that
bisected it. On November 18, 1883, most of the United States and Canadian railroads began
to use this system, which reduced the number of time zones from 56 to four we use today [9].
Despite being adopted by the railroads in 1883, the United States did not legally adopt Standard
Time until the passage of the Standard Time Act on March 19, 1918.

Daylight-Saving Time (DST)
Benjamin Franklin is credited with the invention of Daylight-saving time. He discussed his
observations and ideas in an essay titled, “An Economical Project.” He wrote this essay in
1784 while in Paris as an American delegate. The original purpose of the idea was to save on
the cost of lamp oil and candles in Paris [10]. Given that people’s day-to-day activities were
pegged to the clock even in the late Eighteenth Century, Franklin’s idea was to shift clocks back
an hour in the fall so that people would experience an additional hour of daylight during the
afternoon working hours (and have an hour of daylight less in the morning, when most people
were asleep). He estimated that in a single year, French shopkeepers could save one million
frances on candles alone. The United States adopted DST in 1918 then repealed it after the end
of World War I, because it was unpopular. President Johnson signed the Uniform Time Act of
1966 making DST law. The Energy Policy Act of 2005 amended the 1966 act and started DST
on the second Sunday in March and ends the first Sunday in November [11].

Coordinated Universal Time (UTC)
UTC is the worldwide system for civil time. Atomic clocks are kept in labs around the world.
The International Bureau of Weights and Measures uses this timing clocks and to determine
the international standard UTC, which is accurate to almost a nanosecond or one billionth of a
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second per day. UTC is distributed from various radio stations and from the Global Positioning
System or GPS. U.S. and its territories timezones are set to hours from UTC, though not all
countries follow UTC year round. The United Kingdom is one exception as UTC is the local
time because Greenwich is located there [11].

With an understanding of temporal physiological and computational restrictions and different
ways time is calculated and observed, it is obvious as to why time and understanding temporal
events can be challenging. That is why a simple system like RBI could be so important to
analysts in the field today. The RBI methodology is simple, effective, and has numerous DoD
applications.

1.3 Application to DoD
Intelligence agencies and military command staffs must view massive amounts of data in or-
der to categorize and place the data in context. Placing data in context transforms it in into
information. This transformation is a critical step to making informed decisions. RBI can help
transform data into information.

There is no panacea for intelligence. The RBI methodology does not replace human interaction,
rather, it is required. It does not solve all of the collection or analysis requirements; it is not
intended to. However, this methodology shows significant promise as a useful and effective tool
for analysts, intelligence agencies, and law enforcement.

Below are possible applications that directly support current DoD intelligence and analyst’s
needs.

Some include:

• Terrorist Activity: look for failed terrorist attempts, identify probable locations and
times of Improvised Explosive Device (IED) placements, attribute activity to certain or-
ganizations, classify different social network activity, identify the planning phase of an on
going terrorist operation, sort large data sets quickly for relevant data, identify changes in
operational tempo.

• Criminal Activity: find financial activity, classify behavior of personnel in an organi-
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zation or the organization itself, identify non standard activity, determine social network
activity and classify that activity.

• Nation State Activity: classify specific organizational activity, determine irregular activ-
ity, alert analysts to indications and warnings, identify relevant data in large data sets, and
predict military movement.

1.4 Outline of this Thesis
Chapter 2 gives an overview of supporting and related work. Chapter 3 goes into the mathe-
matics and theory behind the techniques and concepts used in the experiments for this thesis.
Chapter 4 describes the experiments conducted, the data sets, and any pre-processing done.
Chapter 5 discusses these results and lists ideas for future work. Chapter 6 is closing thoughts
and conclusions.
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IMT + ID - RDT +
POSITIVES:

1. Systems are easily parallelizable with multiple timelines because timelines can be
reduced to smallest common denominator of time

2. Easy to comprehend for humans, think of a calendar

3. Easy to model for computers

4. Good for workflow analysis

NEGATIVES:

1. Anchored time is difficult to implement if the time given is not correct. Because of
this it is easy to miss temporal correlations. One method to overcome this issue is a
time window. Another method, the one this paper explores is the use of regression
analysis to solve this sliding window.

2. Certain implementations can be difficult to model and become more complex when
time windows overlap.

Figure 1.1: Summary of Date/Time Line Systems

IMT + ID + RDT -
POSITIVES:

1. Easy for computers and humans to understand

2. Concepts and models are well understood. A Turning machine is an example of a
state space machine.

3. Formality can ensure both completeness and correctness

NEGATIVES:

1. This approach it not easy to implement when evaluating multiple event state
machines as the transition for states are not guaranteed to be the same length.

2. Longer temporal patterns can be more time consuming and results in heavy resource
or time penalties.

Figure 1.2: Summary of State Space and Formal Methods Modeling
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IMT + ID + RDT -
POSITIVES:

1. These approached are not time dependent making implementation easier and faster.

2. The temporal logic system implemented is well understood and easy to model
particular trends.

NEGATIVES:

1. Implementers need to understand propositional logic. This takes formal training.

2. Defining sub-events within larger events becomes more complicated.

Figure 1.3: Summary of Relative Sequential Chaining

Figure 1.4: Section of John Snow’s Map Showing Location of the Water Pump Infected with Cholera and the
Resulting Deaths from the epidemic. From [8].
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CHAPTER 2:
Prior and Related Work

Understanding events and/or activities in a temporal context is important to many fields in
business, science, mathematics, and philosophy. Through the years, several different methods
and techniques have tried to capture a sense of activity or detect significant, relevant events
with temporal data. Understanding some of these approaches is important to see how current
research is conducted.

This chapter covers prior work in these areas.

2.1 Survey of Temporal Analysis Research
There have been decades of research on the topic of time. Below is a comprehensive but not
inclusive review of articles and applications of temporal research. These papers are grouped
into the three views of time as discussed in Chapter 1 (Date/Time Line Systems, State Space
and Formal Methods Modeling, and Relative Sequential Chaining). Many different techniques
have been used to research temporal data, but arguably all research knowingly or unknowingly
use one of these views of time.

Table 2.1: Temporal Analysis Papers—Date/Time Line Sys-
tems

Title Year Short Description
Logical Modeling Of Temporal Data [12] 1987 Discusses fundamentals of temporal

data issues and defines a new type of
temporal model.

Automated Temporal Reasoning About Re-
active Systems [13]

1996 Helps define formal syntax and se-
mantics for propositional temporal
logic.

Visualization Of Spatio-Temporal Informa-
tion In The Internet [14]

2000 Uses a dynamic temporal visualiza-
tion framework for placing objects in
time and space.

Discovering Calendar-Based Temporal Asso-
ciation Rules [15]

2001 Attempts to discover temporal asso-
ciation rules derived from calendar
dates.

Date/Time Line Systems—Continued on next page
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Title Year Short Description
Work Rhythms: Analyzing Visualizations Of
Awareness Histories Of Distributed Groups
[16]

2002 Develops visualizations of business
work flow and does histogram analy-
sis of daily activity over time.

Rhythm Modeling, Visualizations And Ap-
plications [17]

2003 Is a refinement of their work done in
2002 using clustering techniques and
different visualizations.

Visually Mining And Monitoring Massive
Time Series [18]

2004 Product description of a developmen-
tal visualization and time series tool.

Mining And Visualizing The Evolution Of
Subgroups In Social Networks [19]

2006 Recognizes the importance of tem-
poral changes of online communities
and discusses ways to model them.

Learning recurrent behaviors from heteroge-
neous multivariate time-series [20]

2007 Demonstrates the utility of learning
meaningful patterns in multidimen-
sional and heterogeneous data from
information automatically collected
from sensors worn by people.

Exploring Global Terrorism Data: A Web-
Based Visualization Of Temporal Data [21]

2008 Develops visualization techniques to
help analysts find interesting patterns
in a Global Terrorism Database.

Google News Timeline [22] 2009 Innovative way to display news from
different venues organized in a cus-
tomizable temporal view.

Table 2.2: Temporal Analysis Papers—State Space and For-
mal Methods Modeling

Title Year Short Description
Mining Sequential Patterns: Generalizations
And Performance Improvements [23]

1996 Gives an organization algorithm for
itemsets.

Discovery of Frequent Episodes in Event Se-
quences [24]

1997 Develops a framework for discover-
ing frequent episodic data.

Discovering Frequent Event Patterns With
Multiple Granularities In Time Sequences
[25]

1998 Discusses the ideas of an event struc-
ture and temporal granularity.

Knowledge-Based Event Detection In Com-
plex Time Series Data [26]

1999 Uses medical sensor data to find and
detect events in temporal data.

Correlation Mining Between Time Series
Stream And Event Stream [27]

2008 Presents a new algorithm to correlate
temporal data and events.

State Space and Formal Methods Modeling—Continued on next page
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Title Year Short Description
Temporal Mining For Interactive Workflow
Data Analysis [28]

2009 Develops a state space approach for
evaluating process control logs with
workflow graphs.

Table 2.3: Temporal Analysis Papers—Relative Sequential
Chaining

Title Year Short Description
Mining Association Rules Between Sets Of
Items In Large Databases [29]

1993 Introduces the notion of itemsets and
how they can be applied to determin-
ing buying behavior.

Segmenting Time Series: A Survey And
Novel Approach [30]

1993 Completes a survey of three time
series segmentation algorithms, slid-
ing window, top-down and bottom-
up. The author states that a combi-
nation of sliding window and bottom-
up yield drastically better results than
any other combination.

Wide Area Traffic: The Failure Of Poisson
Modeling [31]

1995 Discusses assumptions of Poisson re-
gression and exceptions to those as-
sumptions for network traffic.

Discovery Of Frequent Episodes In Event Se-
quences [24]

1997 Presents a framework for discovering
frequent episodes in sequential data.

A Framework For Knowledge-Based Tempo-
ral Abstraction [32]

1997 Describes a domain-independent
knowledge-based inference structure.

Rule Discovery From Time Series [33] 1998 Introduces two different problems;
one, data clustering and two, devel-
opment of rule induction using these
clusters.

Efficient Time Series Matching By Wavelets
[34]

1999 Uses Discrete Wavelet Transform
(DWT) to analyze and match time se-
ries data.

Event Detection From Time Series Data [35] 1999 Discusses time series data and defines
a method to determine change point
or event detection.

Relative Sequential Chaining—Continued on next page
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Title Year Short Description
Learning Recurrent Behaviors From Hetero-
geneous Multivariate Time-Series [20]

2007 Develops a supervised model that cre-
ates an unsupervised learning algo-
rithm of temporal activity for people
in their homes. Tuning the unsuper-
vised learning portion turned out to be
difficult and severally effected system
performed.

Data mining with Temporal Abstractions:
learning rules from time series [36]

2007 Users develop formal temporal pat-
terns using Allen’s temporal opera-
tors. Then their algorithm identifies
events based on these formal patterns.

Unsupervised Pattern Mining From Symbolic
Temporal Data [37]

2007 Builds a framework to view tempo-
ral concepts and differing data models
for data mining using unsupervised
learning methods.

Discovery Of Activity Patterns Using Topic
Models [38]

2008 Uses modern Natural Language Pro-
cessing (NLP) techniques to deter-
mine activity patterns.

Spatial-Temporal Causal Modeling For Cli-
mate Change Attribution [39]

2009 Develops a spatial-temporal regres-
sion model based on a Graphical
Granger Model.

Spatial-Temporal Association Between Fine
Particulate Matter and Daily Mortality [40]

2009 The authors investigates the spatial-
temporal nature of pollution and mor-
tality using a Bayesian framework.

2.1.1 Date/Time Line Systems Examples
Combining the concepts of space and time is another way to look at data and discover relations.
This method is important in information discovery of objects or events that have temporal and
spatial relations. (Figure 2.1) shows different ways to look at the time: as single event, two
moments in time, interval (passed or current), and how they apply to a space or location.

“Rhythm modeling, visualizations and applications” builds on previous work in rhythm detec-
tion and describes algorithms to detect and model temporal patterns from online geolocation
data. The tools the authors built generate visualizations for users to see their workflow pro-
cesses. The tools use heuristics to determine the threshold values, then cluster work events
by minimizing Euclidean distance. Probability distributions are recalculated and the process is
repeated until the initial and refined estimates converge. The paper then discusses several visual-
izations created by the program and evaluates them and proposes different possible applications
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Existence Spatial location Shape and size Thematic data
Instant events Durable objects

Single
moment t

What events
occurred and
where?

What objects
existed and
where?

Where was
each object at
t?

What
shapes/sizes
had the objects
at t?

What were
values of an
attribute at t?
How were they
distributed?

Two
moments t1
and t2

What is the
difference in
number, kind, or
spatial
distribution of
events between
t1 and t2?

What objects
remained,
appeared, died?
How did the
spatial
distribution
change?

Where/how far
did each object
move?

What is the
difference
between
shapes/sizes at
t1 and t2?

What is the
difference be-
tween values/s-
patial variations
of the attribute
at t1 and t2?

Interval
[t1, t2]
(summary)

What events
occurred during
[t1, t2]?

What objects
existed,
appeared, died
during [t1, t2]?

How did the
objects move?
(trajectory)

How often did
the objects
change? How
much?

What are aver-
age (minimum,
maximum, dom-
inant) values on
[t1, t2]?

Interval
[t1, t2]
(progress)

How did the number, kind,
spatial distribution pattern of
events/objects change in time?

How fast did the
objects move?
Did they meet?
How did the
speed change?

How did the
shapes/sizes
develop with the
time?

How did the
values and their
spatial distribu-
tion develop in
time?

When did maximum changes occur? Were there still periods? Is there any tempo-
ral trend? Was (where was) the development monotonous/periodic?

Figure 2.1: Framework for Dealing with Events that have Both a Temporal and Spatial Relation. From [14].

for these tools [17].

On April 20, 2009, Google announced Google News Timeline. It organizes news search results
in a zoomable, graphical timeline Figure 2.2. This webtool is another example of Date/Time
Line Systems. The view is an anchored scaleable calendar view with a selectable temporal
granularity of day, week, month, year, and decade [22].

2.1.2 State Space and Formal Methods Modeling Example
“In Temporal Mining for Interactive Workflow,” Berlingerio, Pinelli, Nanni, and Giannotti build
upon work done in workflow mining. Their approach reads computer log data and builds tem-
poral process models by grouping sets of execution statements with similar execution times,
grouping semantics of executions, and interfacing with domain experts to select the appropriate
models. This method can help identify abnormalities in the logs and can in some cases, generate
new process models [28].

2.1.3 Relative Sequential Chaining Examples
In the early 1990s, regression was used to model network traffic analysis. It was accepted that all
network traffic arrival rates could be modeled using regression analysis. In their paper “Wide
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Figure 2.2: Screen Capture from Google’s News Timeline Tool

Area Traffic: The Failure of Poisson Modeling”, Paxson and Floyd discuss several statistical
methods used to model computer network traffic. They found that Poisson Linear Regression
does not adequately model all forms of network traffic. They state Poisson distributions are
only valid for modeling the arrival of user sessions and that the protocols are too “bursty” and
therefore have different time scales which prevent the model from performing well. Again,
temporal granularity is an issue and must be understood for the Poisson distribution to work
well.

Das, Lin and Mannila developed a method to create and evaluate rules for stock market predic-
tion. They were able to generate rules based on exploratory induction of discrete time series
data. The first step in their process was to use K-means clustering to classify stock data. They
then developed an algorithm to discover simple rules from these different sequences. Their
method created a large range of rules, some with limited value. To compensate for the large
number of rules, they used the J-measure for rule-ranking developed by Smyth and Goodman
in 1991. They found their technique needed the help of human interpretation to find the most
useful rules for the particular dataset [33].
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Guralnik and Srivastava developed a data mining method to separate temporal data into events
when the model changes overtime. This technique is often called change-point detection. Their
method requires the desired number of change points to be given, which can be a drawback.
The take-away of this paper is that incremental optimization is not nearly as effective as global
optimization over the whole set of data [35].

Another paper dealing with change point detection combines two standard approaches, mainly,
finding the change points given a desired number of change points and uses a best fit curve to
determine the interval between successive change points. The authors studied detecting change
points by using Maximum Likelihood Estimation (MLE). If the number of change points are
known before hand, then the statistical likelihood, L, of the change point is equal to

L =


∏k

i=1 σ
−mi
i[∑k

i=1miσ
2
i

]−n/2 (2.1)

where k is the number of change points, mi is the number of time points in segment i, and n is
the total number of points.

If the change points are not known, the maximum likelihood estimate of the θi’s can be found
by maximizing the likelihood l over all possible sets of θi’s, or equivalently, by minimizing
−2 logL the function is equivalent to,

− 2 logL =

{ ∑k
i=1mi log σ2

i

n log(
∑k

i=1miσ
2
i )

(2.2)

Shahar developed a general framework for reusing domain-independent knowledge for solving
temporal abstraction and enabled sharing of domain-specific knowledge with other tasks in the
same domain. This framework has been used in several different areas of medical research
and has proven useful in the organization of his temporal work. Specifically, he defines five
knowledge-based temporal-abstraction methods: temporal-context restriction, vertical temporal
inference, horizontal inference, temporal interpolation, and temporal pattern matching [32].

Huynh, Fritz, and Schiele use Natural Language Processing (NLP) machine learning methods
to automatically annotate users’ daily activity. Subjects wore two tracking devices for several
days. The output from the device was converted into documents of discrete activity labels.
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Using Latent Dirichlet Allocation, the documents were associated with these activity labels.
The authors then showed how labeling of events could be done with unsupervised learning,
though supervised learning yielded the best results. This technique has potential to prove more
useful and robust then other unsupervised learning algorithms because many of the techniques
used in NLP are understood [38].
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CHAPTER 3:
Techniques

This chapter documents the techniques, concepts, and technical approaches used in the experi-
ments for this thesis. This chapter will cover certain fundamental concepts and terms necessary
for basic understanding of this research.

3.1 Generalized Linear Models and Logistic Regression
Generalized linear models (GLM) are a set of models that approximate more complex phe-
nomenon. Linear models are an important class of probabilistic model. In the 1950’s, logistic
regression became an important tool in biostatistics and, today, is used in many areas of science,
engineering, business, and economics [41].

3.1.1 Poisson Linear Models
Within the GLM there are special sets of logistic regression models for univariate response data.
A Poisson linear regression model works best with independent count data such as the number
of calls to a call center [41]. In a Poisson Linear Model, the variance is a function of the mean.

Terms and Assumption
Terms and assumption in Poisson Linear Regression:

Covariates or Regressor Variables (x1, x2, · · · , xk) are the items one wishes to test against.
For example, if one wanted to know the effect of certain drugs based on age, sex, dose,
the covariates would be age, sex, dose.

Regression Coefficients (β) are the unknown model parameters that are calculated using the
Poisson LM.

Response Variable (y) item of interest or collected data. This count could be the number of
calls per day to a call center or the number of IED attacks in a given area per week.

y = Xβ (3.1)
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Z Value - In the case of this test data the higher Z value the better. As shown in Chapter
4 the Z values are used to rank the individual rules for the reasons mentioned above.
Additionally, the Z values are in absolute terms because it is a logistic regression model.

P-value Pr(>|Z|) - The probability that the rule added appears useful, in the case where it is
not. Therefore a P value close to zero indicates a good predictor. Data derived from
Chapter 4 show extremely small P values. These values quickly rounded to zero as the
Z value grows as shown in table. This means P values cannot be used to prioritize the
rules.

Z value P value
0.5 0.6170
1 0.3173
2 0.0455
3 0.0027
4 6.3e-05
5 5.7e-07
6 1.9e-09
7 2.5e-12
8 1.2e-15

Mean (µ) The mean number of occurrences or arithmetic mean.

µ(x) =
1

n
·

n∑
i=1

xi, i = 1, 2, · · · , n (3.2)

Maximum Likelihood Estimator (MLE) provides a estimate for how well a model fits the
data.

Independence - We say that two random variables are independent when of two events A and
B such that P(A ∩B) = P(A)P(B).

The assumptions for Poisson Regression are:

1. Observations are independent.
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2. Variance and mean are equal:

E(xi) = µ(xi), i = 1, 2, · · · , n (3.3)

3. A set of regressors x1, x2, · · · , xk influence µ via the model.

µi = ex
′
iβ, i = 1, 2, · · · , n (3.4)

With these assumptions in place we can set:

where y =


y1

y2

...
yn

 ,

X =


1 x11 x12 · · · x1k

1 x21 x22 · · · x2k

...
...

...
...

1 xn1 xn2 · · · xnk

 ,

β =


β0

β1

...
βk

 ,

and E(ε) = 0

In order to find the Maximum Likelihood Estimator (MLE), we start with

L = ln L(y,β) =
n∑

i=1

[−ex′
iβ + yix

′
iβ − ln yi!] (3.5)

Using this equation, the MLE is derived using an unsigned numerical search procedure like
iteratively reweighed least squares [42].
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3.2 Program Design
Temporal rules and data manipulation were programmed in Python version 2.6, while statistical
analysis was done in R version 2.10.0 using the Rpy version 2.0.8 interface to send commands
to and retrieve data from R.

The Python temporal rules were created as class objects to allow for logical design of rules
and polymorphic rule creation. In many cases, rules were combined to make other rules. For
example, US Workweek is a combination of the common work days Monday thru Friday and
the removal of national holidays.

The temporal assumptions in this thesis are as follows. One, all temporal rules relate to daily
activity. Two, both the scope of the rules and the data have the same temporal granularity,
meaning if the data are counts in days, then the rules are applicable to days.

3.2.1 Formatting Data
In some cases, the data had a finer temporal granularity than days so the information was trans-
formed to meet a daily format. For example, one dataset had a temporal granularity of seconds
and was therefore transformed into a daily number of calls. This transformation ensured the
rules and dataset had the same temporal measure (i.e., days). If the dataset where not set to a
daily count, different temporal rules would have had to have been created so that these rules
matched the granularity of the data. Since doing this would not have added to the experimental
value of the thesis, the Israeli data was made to have the same temporal granularity as the ACTS
data (i.e., day). That said, the rules could have been created to match any temporal granularity
desired.

Data formatting was done using simple Python expressions. Modules were created for each
dataset to make sure it configured to the correct temporal dimension (i.e., day). Additionally,
only the first instance of a unique rule was used. In the example below Muslim and Jewish
Workweeks are the same. Because MuslimWorkweek rule was analyzed first the JewishWork-

week was dropped from consideration. This will be discussed in Chapter 4 in greater detail.

3.2.2 Developing and Verifying Rules
Rules were developed using a simple hypothesis, cultural norms and work patterns are predic-
tive of human behavior. Therefore, rules can be developed and used to correlate their behavior
such as daylight saving activity, or calls to a call center.
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DST change dates where generated from the computer’s own time zone algorithm. The com-
puter actually calculates over 500 different zones around the world. Many of these zones have
the same DST transitions. For example, Atlantic.Bermuda and America.Denver and Amer-

ica.New York all have the exact same DST transitions. Because of this duplication only the first
unique rule was tested while all other similar rules were dropped from the rule list.2

Some of the rules used in these experiments were developed from workday patterns (standard
workweek minus holidays), religious regional holidays from the Jewish or Muslim. The West-
ern workweek starts on Monday and ends on Friday, while the Israeli and Muslim workweeks
start on Sunday and end on Thursday. Holidays are unique to a country and/or a geographical
region. An example of a unique holiday would be Independence Day (July 4) in the United
States. Of course, there are other holidays that multipule cultures such as New Years. However,
taken as a whole, the cultural work year is unique to every country and therefore can be used
to correlate data to location. Even within predominately Muslim countries, where holidays are
very closely tied to the religious holiday, there are differences which allow for differentiation.

Again rules chosen were based on their tight binding to a specific cultural behavior like observed
holidays and DST. However, these rules could have as easily have been known patterns of
a military unit’s operational tempo, spending patterns of certain demographics, or timing of
terrorist attacks.

3.3 Implementation
The actual rules are implemented as instances of classes that subclass the TimeRule abstract
super class in the Python file time_rules.py.

The abstract superclass defines a simple abstract rule that matches no time events:

class TimeRule:
DESCRIPTION = "Abstract rule Class."
def inRule(self,tval):

"""The default inRule is that it is never in the rule.
tval is in local time."""
return False

def __str__(self):
return "%s" % (self.__class__.__name__)

2As it turned out, this pre-filtering step was not necessary because R could do stepwise regression which would
have had the same effect, by only adding rules that change the models accuracy. Because adding the same rule
would not change the models accuracy it would not have been added to the list.

25



Subclasses of this abstract class implement specific rules. For example, this rule implements
the Israeli work days:

class Israeli_WorkDays(TimeRule):
"""Return "True" if it is a day on which somebody works in Israel."""
def __init__(self):

self.Israel_Holiday_Rule = Jewish_Holidays_1999
self.WEEKDAY_RULE = IsraeliWeekday()

def inRule(self,tval):
# A day is an israel workday if it is workday and not a holiday
return self.WEEKDAY_RULE.inRule(tval) and self.Israel_Holiday_Rule.inRule(tval)==False

The Python list rule_list holds every rule that is to be tested. Rules are added as objects,
which are typically instances of a rule class. This allows a single generic class to generate many
specialized rules, although some rule classesa re used to generate just a single instance. Adding
instances to this list is straightforward:

rule_list.append(Israeli_WorkDays())

A special Almanac class allows the creation of rules (instances) that match a specific day of
the year. For example, this code creates a rule that matches the actual US Independence day in
1999 and adds it to the rule_list:

rule_list.append(Almanac("US Independence Day 1999",[date(1999,7,4)],True))

With this in place, multiple rules can be combined to make a larger rule. For example, US -

WorkDays is a combination of the WesternWeekday rule and the days that are not US Holidays.

class US_WorkDays(TimeRule):
def __init__(self):

self.US_HOLIDAY_LIST = [US_NewYears(),US_MartinLuther(),
US_WashingtonBDay(),US_MemorialDay(),US_IndependanceDayObserved(),
US_LaborDay(),US_ColumbusDay(),US_VeteriansDayObserved(),
US_Thanksgiving(),US_ChristmasDayObserved()]
self.WEEKDAY_RULE = WesternWeekday()

def inRule(self,tval):
""" It is not a workday if it is a US holiday
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Go through the list of US holidays and see if any of the rules match.
If so, return false"""
for r in self.US_HOLIDAY_LIST:

if r.inRule(tval)==True: return False
# It is a Workday if the day is a weekday
return self.WEEKDAY_RULE.inRule(tval)

rule_list.append(US_WorkDays())

The following rules were used:

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday
January
February
March
April
May
June
July
August
September
October
November
December
WesternWeekday
MuslimWeekday
IsraeliWeekday
US NewYears
US MartinLuther
US WashingtonBDay
US MemorialDay
US IndependanceDayObserved
US LaborDay
US ColumbusDay
US VeteriansDayObserved
US Thanksgiving

US ChristmasDayObserved
US WorkDays
US BimonthlyPay
Israeli WorkDays
Muslim WorkDays
DSTRule(Africa/Abidjan)
DSTRule(Africa/Addis Ababa)
DSTRule(Africa/Algiers)
DSTRule(Africa/Blantyre)
DSTRule(Africa/Cairo)
DSTRule(Africa/Ceuta)
DSTRule(Africa/Tunis)
DSTRule(Africa/Windhoek)
DSTRule(America/Adak)
DSTRule(America/Anchorage)
DSTRule(America/Anguilla)
DSTRule(America/Araguaina)
DSTRule(America/Argentina/Buenos Aires)
DSTRule(America/Argentina/Catamarca)
DSTRule(America/Argentina/San Luis)
DSTRule(America/Asuncion)
DSTRule(America/Atikokan)
DSTRule(America/Belem)
DSTRule(America/Belize)
DSTRule(America/Boa Vista)
DSTRule(America/Boise)
DSTRule(America/Campo Grande)
DSTRule(America/Cancun)
DSTRule(America/Caracas)
DSTRule(America/Dawson)
DSTRule(America/Dawson Creek)
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DSTRule(America/Detroit)
DSTRule(America/Fortaleza)
DSTRule(America/Glace Bay)
DSTRule(America/Godthab)
DSTRule(America/Goose Bay)
DSTRule(America/Havana)
DSTRule(America/Indiana/Indianapolis)
DSTRule(America/Indiana/Knox)
DSTRule(America/Miquelon)
DSTRule(America/Montevideo)
DSTRule(America/Noronha)
DSTRule(America/Recife)
DSTRule(America/Resolute)
DSTRule(America/Santiago)
DSTRule(America/Sao Paulo)
DSTRule(America/Scoresbysund)
DSTRule(America/St Johns)
DSTRule(Antarctica/Casey)
DSTRule(Antarctica/Davis)
DSTRule(Antarctica/DumontDUrville)
DSTRule(Antarctica/Mawson)
DSTRule(Antarctica/McMurdo)
DSTRule(Asia/Almaty)
DSTRule(Asia/Amman)
DSTRule(Asia/Anadyr)
DSTRule(Asia/Aqtau)
DSTRule(Asia/Ashgabat)
DSTRule(Asia/Baghdad)
DSTRule(Asia/Baku)
DSTRule(Asia/Beirut)
DSTRule(Asia/Colombo)
DSTRule(Asia/Damascus)
DSTRule(Asia/Dubai)
DSTRule(Asia/Gaza)
DSTRule(Asia/Irkutsk)
DSTRule(Asia/Jayapura)
DSTRule(Asia/Jerusalem)
DSTRule(Asia/Kabul)

DSTRule(Asia/Kathmandu)
DSTRule(Asia/Krasnoyarsk)
DSTRule(Asia/Magadan)
DSTRule(Asia/Nicosia)
DSTRule(Asia/Novosibirsk)
DSTRule(Asia/Rangoon)
DSTRule(Asia/Sakhalin)
DSTRule(Asia/Tbilisi)
DSTRule(Asia/Tehran)
DSTRule(Asia/Yakutsk)
DSTRule(Asia/Yekaterinburg)
DSTRule(Atlantic/Canary)
DSTRule(Atlantic/Cape Verde)
DSTRule(Atlantic/South Georgia)
DSTRule(Atlantic/Stanley)
DSTRule(Australia/Adelaide)
DSTRule(Australia/Currie)
DSTRule(Australia/Darwin)
DSTRule(Australia/Eucla)
DSTRule(Australia/Lord Howe)
DSTRule(Europe/Moscow)
DSTRule(Europe/Riga)
DSTRule(Pacific/Apia)
DSTRule(Pacific/Chatham)
DSTRule(Pacific/Easter)
DSTRule(Pacific/Efate)
DSTRule(Pacific/Enderbury)
DSTRule(Pacific/Fakaofo)
DSTRule(Pacific/Fiji)
DSTRule(Pacific/Funafuti)
DSTRule(Pacific/Gambier)
DSTRule(Pacific/Kiritimati)
DSTRule(Pacific/Marquesas)
DSTRule(Pacific/Midway)
DSTRule(Pacific/Norfolk)
DSTRule(Pacific/Pitcairn)
DSTRule(Pacific/Tongatapu)

Programming rule details can be found in the Appendix.
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CHAPTER 4:
Experiments

This section details the dataset and results of the experiments. There were three dataset used
the ACT Data, Israeli Bank Data, and the GTD data. All of the datasets overlapped in 1999.
Because of this overlap, only one temporal set of rules was needed.

In conducting the experiments, the Poisson regression was run against each rule independently
ensuring the rules did not over-fit the data. While not shown in the data tables below, the
Poisson regressions were also accomplished using a stepwise function, meaning rules are added
and removed from the list based on significance of modelling effect. Because duplicate rules
(like countries observing the same DST changes, were removed before making the stepwise
regression, the results where not significantly different. However, if pre-filtering were not done,
stepwise regression would have automatically removed duplicate rules. In the future this might
be a better method because it eliminates a preprocessing/filtering step.

Again, as discussed in Chapter 3, it is difficult to show a substantial difference in the P value
when the Z values are so high; therefore, Z values not P values were used to prioritize the
individual rules. In ACTS and Israeli Bank datasets rules were created with the data in mind and
have very high Z scores. Because no rule were created for the GTD dataset, these prioritizations
have lower Z scores and are less meaningful.

Upon analysis, the findings support the RBI methodology. A rule bank of known temporal data
can be used to correlate temporal activity to different data.

4.1 NIST Data
This dataset was collected by the National Institute of Standards and Technology (NIST). It was
collected from the Automated Computer Time Service (ACTS), which distributes Coordinated
Universal Time (UTC) to computer systems via analog modems over ordinary telephone lines,
operating mainly from Boulder, Colorado. Figure 4.1 shows ACTS timing requests for 1999.
These data were taken from a dataset that had 10 years worth of ACTS data [3].
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Figure 4.1: ACTS Data—Number of Phone Calls Per Day.

4.1.1 Results
As seen in Summary of Findings table from the ACTS Data, DSTRule.America.Adak was the
most strongly correlated rule with the dates for this rule being 4/4/99 and 10/31/99. Adak is
a city in Alaska so this rule represents the DST date changes for most of the United States.
Specifically this includes Denver, Colorado where the ACTS are located. As seen in the figure
4.1, the two highest data spikes are on 4/4/99 (23192 calls that day) and 10/31/99 (30024 calls
that day). The Z value for this rule was 219.56, which means there is a strong correlation
between this rule and where the data originated. The next closest rule October has a Z value
of 177.29, this make sense as the second DST change is in October. The third rule is February

with a value of 153.2. At first look this makes no sense, however, the rules are ranked by their
absolute Z value. The estimate for this rule is negative, which means the rule demonstrates
negative associativity. In other words February is the third on the list, but in reality it is strongly
anticorrelated to the data. Again as discussed in Chapter 3, Z values of more than 40 have a P
value which truncates to zero because 64 bits is not enough precision for values so small.

In this case the RBI methodology works and shows a significant correlation to DST in the United
States for this dataset. It is interesting to note that DSTRule.Africa.Ceuta and DSTRule.America.Havana

are only one day from each other. DSTRule.America.Havana has a Z value of 130.5.
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Table 4.1: Summary of Findings—ACTS Data—Every Rule
Independent

Rule Name Estimate Std. Error ABS(Z Value) Pr(>|z|)
DSTRule.America.Adak. 0.9586 0.0044 219.56 0.0000
October 0.2917 0.0016 177.29 0.0000
February -0.345 0.0023 153.2 0.0000
DSTRule.Africa.Ceuta. 0.6894 0.005 138.48 0.0000
DSTRule.America.Havana. 0.6596 0.0051 130.57 0.0000
DSTRule.Africa.Windhoek. 0.5353 0.0054 99.7 0.0000
Muslim WorkDays 0.111 0.0012 96.14 0.0000
MuslimWeekday 0.1056 0.0012 90.49 0.0000
Israeli WorkDays 0.1012 0.0011 89.11 0.0000
DSTRule.Africa.Cairo. -0.7301 0.01 72.73 0.0000
DSTRule.Asia.Amman. -0.6142 0.0095 64.81 0.0000
DSTRule.America.Araguaina. -0.6003 0.0094 63.78 0.0000
Saturday -0.0963 0.0015 62.99 0.0000
Monday 0.0851 0.0014 59.4 0.0000
September 0.105 0.0018 58.38 0.0000
Friday -0.0811 0.0015 53.79 0.0000
August 0.0862 0.0018 48.27 0.0000
Tuesday 0.0648 0.0014 44.92 0.0000
Sunday 0.0641 0.0014 44.41 0.0000
July 0.0745 0.0018 41.49 0.0000
DSTRule.Pacific.Fiji. -0.3351 0.0083 40.62 0.0000
US ChristmasDayObserved 0.2946 0.0085 34.56 0.0000
April 0.0624 0.0018 34.08 0.0000
DSTRule.America.Goose Bay. 0.2086 0.0063 33.08 0.0000
US VeteriansDayObserved 0.2667 0.0086 30.85 0.0000
US MemorialDay -0.1363 0.0047 28.74 0.0000
US WorkDays 0.0319 0.0011 28.72 0.0000
DSTRule.America.Godthab. 0.1409 0.0065 21.62 0.0000
DSTRule.Asia.Tehran. 0.137 0.0065 20.97 0.0000

ACTS Data - Continued on next page
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Table 4.1—Summary of Findings—ACTS Data—Continued

Rule Name Estimate Std. Error ABS(Z Value) Pr(>|z|)
US Thanksgiving 0.181 0.009 20.06 0.0000
US ColumbusDay 0.168 0.0091 18.5 0.0000
DSTRule.Asia.Jerusalem. 0.1118 0.0066 16.9 0.0000
Wednesday -0.0244 0.0015 16.4 0.0000
US LaborDay 0.1463 0.0092 15.94 0.0000
DSTRule.Asia.Baghdad. 0.1019 0.0066 15.34 0.0000
Thursday -0.0225 0.0015 15.12 0.0000
DSTRule.Australia.Currie. 0.0998 0.0067 15.01 0.0000
WesternWeekday 0.0165 0.0011 14.4 0.0000
DSTRule.Antarctica.McMurdo. 0.0954 0.0067 14.3 0.0000
DSTRule.Pacific.Tongatapu. 0.1262 0.0093 13.61 0.0000
DSTRule.America.Santiago. 0.0833 0.0067 12.42 0.0000
DSTRule.Asia.Gaza. 0.0805 0.0067 11.98 0.0000
US WashingtonBDay 0.1049 0.0094 11.19 0.0000
DSTRule.America.Argentina.Buenos -
Aires.

0.0956 0.0094 10.16 0.0000

DSTRule.America.Asuncion. 0.0283 0.0069 4.1 0.0000
US IndependanceDayObserved 0.0299 0.0097 3.08 0.0021
March -0.0052 0.0019 2.8 0.0051
June -0.0053 0.0019 2.8 0.0051
DSTRule.Atlantic.Stanley. 0.0182 0.0069 2.63 0.0086
May 0.0044 0.0018 2.38 0.0171
January -19.6305 18.8083 1.04 0.2966
US BimonthlyPay -16.5472 16.5224 1 0.3166
DSTRule.Asia.Damascus. -16.5472 16.5224 1 0.3166
US NewYears -16.5445 23.3662 0.71 0.4789
US MartinLuther -16.5445 23.3662 0.71 0.4789
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4.2 Israel Bank Center Call Data
This data was downloaded from http://iew3.technion.ac.il/serveng/callcenterdata. The data is
an archive of all the calls handled by a bank call center in Israel for the year 1999. The original
data detailed information about the calls down to the second. However, the data used for this
experiment was modified to only count the number of calls per day. During weekdays (Sunday
to Thursday), the call center was staffed from 7:00 am to midnight local time. The call center
closed at 2:00 pm on Friday and reopened at around 08:00 pm on Saturday. The automated
service operated 7 days a week, 24 hours a day [4].

Figure 4.2: Call Center Data—Number of Phone Calls Per Day

4.2.1 Results
From the Summary of Findings table for the bank call center data, the most correlated rule was
Israeli WorkDay. The Z value was 271.95, again this shows a strong correlation of the rule
and where the data originated, which was in Israel. The next rule is MuslimWeekday, which
the same as the IsrealiWeekday rule. Because of the preprocessing step for duplicate rule the
IsrealiWeekday rule was not examined. Muslim WorkDays is the next and is closely bound to
the Israeli data because they have the same workweek rule. The next two rules on the list are
Saturday and Friday. Note both of these rules have negative estimate valuing, meaning there
is a negative correlation to the data. This makes sense as the Israeli weekend is Friday and
Saturday so one would expect the calling activity to show a negative correlation.
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Table 4.2: Summary of Findings—Bank Data—Every Rule
Independent

Rule Name Estimate Std. Error Z Value Pr(>|z|)
Israeli WorkDays 1.3061 0.0048 271.95 0.0000
MuslimWeekday 1.4268 0.0053 270 0.0000
Muslim WorkDays 1.3182 0.0049 266.3 0.0000
Saturday -1.9038 0.0098 194.87 0.0000
Friday -0.9061 0.0061 148.11 0.0000
Sunday 0.3806 0.0038 100.64 0.0000
WesternWeekday 0.3473 0.0036 95.86 0.0000
US WorkDays 0.2766 0.0034 81.48 0.0000
Tuesday 0.2967 0.0039 76.43 0.0000
Thursday 0.2744 0.0039 70.2 0.0000
Monday 0.2709 0.0039 69.22 0.0000
Wednesday 0.2453 0.0039 62.15 0.0000
DSTRule.America.Goose Bay. -1.821 0.0503 36.22 0.0000
DSTRule.America.Asuncion. -1.7669 0.0489 36.11 0.0000
DSTRule.America.Santiago. -1.7645 0.0489 36.1 0.0000
DSTRule.America.Araguaina. -1.7065 0.0475 35.94 0.0000
DSTRule.Atlantic.Stanley. -2.3305 0.0648 35.94 0.0000
DSTRule.America.Godthab. -1.6776 0.0468 35.84 0.0000
DSTRule.Asia.Baghdad. -1.3499 0.0397 33.96 0.0000
January -0.1928 0.0058 33.03 0.0000
September -0.1648 0.0059 28.14 0.0000
US BimonthlyPay -0.7978 0.0302 26.43 0.0000
US IndependanceDayObserved 0.5622 0.0217 25.9 0.0000
DSTRule.America.Argentina.Buenos -
Aires.

-1.6688 0.066 25.3 0.0000

April -0.1422 0.0058 24.52 0.0000
DSTRule.Antarctica.McMurdo. 0.4049 0.0166 24.33 0.0000
August 0.1193 0.0051 23.29 0.0000
DSTRule.Asia.Tehran. 0.3737 0.0169 22.11 0.0000

Bank Data - Continued on next page
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Table 4.2—Summary of Findings—Bank Data—Continued

Rule Name Estimate Std. Error Z Value Pr(>|z|)
US MemorialDay 0.243 0.0115 21.18 0.0000
DSTRule.Africa.Windhoek. 0.3456 0.0171 20.17 0.0000
US VeteriansDayObserved 0.4332 0.0231 18.72 0.0000
DSTRule.Australia.Currie. 0.3188 0.0174 18.37 0.0000
US ChristmasDayObserved -0.7159 0.041 17.46 0.0000
US NewYears -0.7092 0.0409 17.36 0.0000
DSTRule.America.Adak. 0.3037 0.0175 17.36 0.0000
October -0.094 0.0056 16.8 0.0000
DSTRule.Asia.Jerusalem. -0.4033 0.0248 16.25 0.0000
DSTRule.Asia.Damascus. -0.3996 0.0248 16.13 0.0000
DSTRule.Africa.Ceuta. 0.2786 0.0177 15.73 0.0000
DSTRule.Pacific.Tongatapu. 0.2789 0.025 11.17 0.0000
US ColumbusDay 0.2783 0.025 11.14 0.0000
DSTRule.Asia.Amman. -0.2479 0.023 10.79 0.0000
DSTRule.America.Havana. -0.2285 0.0228 10.04 0.0000
US MartinLuther 0.253 0.0253 10 0.0000
May 0.0512 0.0053 9.71 0.0000
US LaborDay 0.2297 0.0256 8.97 0.0000
DSTRule.Asia.Gaza. 0.1578 0.0188 8.4 0.0000
US WashingtonBDay 0.2158 0.0258 8.37 0.0000
June 0.0412 0.0054 7.67 0.0000
July 0.0363 0.0053 6.86 0.0000
DSTRule.Pacific.Fiji. 0.1255 0.0191 6.57 0.0000
March 0.0301 0.0053 5.67 0.0000
US Thanksgiving 0.1385 0.0268 5.17 0.0000
February -0.0241 0.0057 4.23 0.0000
DSTRule.Africa.Cairo. 0.0573 0.0198 2.9 0.0037

Again, the RBI methodology showed the tight binding to the Israeli holiday and a decreased
correlation to the Israeli weekend. In this case, the RBI methodology seems to be not only
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explain what rules correlate but also show which strongly do not correlate. From an analysis
perspective, a negative correlation can be just as informative as a strong positive correlation.

4.3 Global Terrorism Database
The Global Terrorism Database (GTD) is a open-source database with records starting in 1970
and ending in 2007. There are over 80000 events in the database and every event includes where,
when, and how each event occurred. The recorded data was derived from open-source material
such as books, journals, and legal documents. The data from 1970-1997 was collected by the
Pinkerton Global Intelligence Services (PGIS)–a private security agency. Cases between 1998
and 2007 were developed from a partnership from Center for Terrorism and Intelligence Studies
(CETIS), and the Study of Terrorism and Responses to Terrorism (START) groups. Additional
events were added from the Conflict Archive on the Internet; the Australian Turkish Media
Group, Armenian Terrorism: The Past, Present, the Prospects, by Francis Hyland; the Nation
Abortion Federation; and the Further Submission and Responses by the ANC to Questions
Raised by the Commission for Truth and Reconciliation 5/12/97.

Figure 4.3: Global Terrorism Database Data—Number of Attacks Per Day

4.3.1 Results
The GTD data is the control dataset. There were no rules created or designed for this data.
If the control is correct, there are no rules that standout as particularly strong for this data.
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When compared to the other dataset, results the top rules both had Z scores over 200. This is
reasonable of the incidents in 1999 32% of the attacks happened in Algeria, Columbia, India,
and Turkey. None of these countries workweeks are coded in the rule set. Twenty-three percent
of the attacks happened in the Middle East and Northern Africa this region is predominately
Muslim; however, it is not reasonable to believe global or even regional terrorist activity follows
a regular workweek pattern unless it is to target populated areas. Again, this would not follow
a holiday schedule, per say, and this is reflected in the low Z scores.

The top rule is June with a Z value of 7.31, which is much different than the 200 seen in the
other rules. This is interesting by looking at the graph both the months of June and March
show more consistent activity 4.3. The second rule DSTRule.America.Argentina.Buenos Aires

is interesting and points to a important issue when using automated systems such as discussed
in this thesis. It seems in 1999 several countries adopted a standard daylight saving change in
the later part of the year. The DSTRule.America.Argentina.Buenos Aires is an example of this.
This rule has only one day change and it is on 10/2/99, which also happens to correspond to the
high spike shown on the graph. If an analysis is not paying attention, he or she might think there
is a correlation to global terrorist attacks and daylight saving in Argentina. When in fact this is
an anomaly, as it is a rule with only one day. The likelihood of random rules showing a high
correlation decrease significantly as the rules become more complex (i.e., more rules than one).
The reason similar activity was not seen in the other datasets is easily explained; the temporal
rules created were created with these datasets in mind so they should have high Z values and
over shadow a single day with a high spike.

Table 4.3: Summary of Findings—GTD Data—Every Rule
Independent

Rule Name Estimate Std. Error Z Value Pr(>|z|)
June 0.5834 0.0799 7.31 0.0000
DSTRule.America.Argentina.Buenos -
Aires.

1.6189 0.2373 6.82 0.0000

March 0.5089 0.081 6.28 0.0000
DSTRule.America.Asuncion. 1.257 0.2019 6.22 0.0000
January -0.6298 0.1301 4.84 0.0000
DSTRule.America.Araguaina. 1.03 0.2253 4.57 0.0000

GTD Data - Continued on next page
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Table 4.3—Summary of Findings—GTD Data—Continued

Rule Name Estimate Std. Error Z Value Pr(>|z|)
July 0.3708 0.0853 4.35 0.0000
February -0.5711 0.1332 4.29 0.0000
September -0.4815 0.1237 3.89 0.0001
October 0.2727 0.0886 3.08 0.0021
US Thanksgiving 0.9189 0.3345 2.75 0.0060
DSTRule.Asia.Baghdad. 0.6687 0.2687 2.49 0.0128
DSTRule.Australia.Currie. 0.6687 0.2687 2.49 0.0128
DSTRule.Pacific.Fiji. 0.6687 0.2687 2.49 0.0128
May -0.2465 0.1098 2.25 0.0247
April -0.2475 0.1115 2.22 0.0265
DSTRule.Antarctica.McMurdo. 0.5938 0.2787 2.13 0.0331
Saturday 0.1505 0.0748 2.01 0.0444
DSTRule.Africa.Cairo. -1.9803 1.0004 1.98 0.0477
DSTRule.Atlantic.Stanley. -1.2864 0.7076 1.82 0.0691
DSTRule.Asia.Gaza. 0.513 0.29 1.77 0.0769
Muslim WorkDays -0.0926 0.0592 1.57 0.1174
WesternWeekday -0.0916 0.0599 1.53 0.1265
DSTRule.America.Adak. -0.8802 0.578 1.52 0.1278
MuslimWeekday -0.0889 0.0598 1.49 0.1371
Israeli WorkDays -0.0835 0.0586 1.43 0.1540
US ChristmasDayObserved -1.2844 1.0004 1.28 0.1992
US IndependanceDayObserved 0.5111 0.4092 1.25 0.2116
US VeteriansDayObserved 0.5111 0.4092 1.25 0.2116
US BimonthlyPay -0.5918 0.5008 1.18 0.2373
DSTRule.Africa.Windhoek. -0.5918 0.5008 1.18 0.2373
US WorkDays -0.0637 0.0583 1.09 0.2743
DSTRule.America.Santiago. 0.3291 0.3174 1.04 0.2998
US MemorialDay -0.2559 0.2687 0.95 0.3408
Monday -0.0668 0.0808 0.83 0.4084
US NewYears -0.5905 0.7076 0.83 0.4040
Wednesday -0.0538 0.0804 0.67 0.5034

GTD Data - Continued on next page
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Table 4.3—Summary of Findings—GTD Data—Continued

Rule Name Estimate Std. Error Z Value Pr(>|z|)
August -0.0681 0.1017 0.67 0.5033
DSTRule.Africa.Ceuta. 0.223 0.3345 0.67 0.5050
DSTRule.Asia.Amman. 0.223 0.3345 0.67 0.5050
DSTRule.Asia.Tehran. 0.223 0.3345 0.67 0.5050
Thursday -0.0474 0.0802 0.59 0.5550
DSTRule.America.Havana. -0.1848 0.4092 0.45 0.6516
DSTRule.Asia.Damascus. -0.1848 0.4092 0.45 0.6516
DSTRule.Asia.Jerusalem. -0.1848 0.4092 0.45 0.6516
US LaborDay -0.1843 0.578 0.32 0.7498
US ColumbusDay -0.1843 0.578 0.32 0.7498
DSTRule.Pacific.Tongatapu. -0.1843 0.578 0.32 0.7498
DSTRule.America.Godthab. 0.1044 0.3546 0.29 0.7684
DSTRule.America.Goose Bay. 0.1044 0.3546 0.29 0.7684
Tuesday 0.0156 0.0784 0.2 0.8428
Friday -0.0067 0.0784 0.09 0.9320
Sunday -0.003 0.079 0.04 0.9695
US MartinLuther -14.5878 469.3236 0.03 0.9752
US WashingtonBDay -14.5878 469.3236 0.03 0.9752
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CHAPTER 5:
Future Work

This thesis has shown a simple, reliable methodology to assist analysts correlate temporal rules
to datasets of interest. This supervised learn techinique is straightforward and easy to code. The
integration of free statical tools like R are available to anyone with internet connectivity and can
be used with a little research. There are many relevant and useful research questions that are left
unanswered. Future work should involve these areas where this methodology can be expanded.

The first most obvious is to test different data using different temporal granularity. For example,
the Israeli bank data has phone records down to the second; it would be interesting to see if you
can localize the phone activity based on the observation of local sunset. Rules could be created
to localize the celestial observation down to the tens of minutes. Muslim and Jewish holidays
both start based on local celestial observation. As stated in Chapter 1, this is of interest because
the observed phases of the moon or cycles of the sun are different depending on the observers
location on the Earth, these can change the observation of the holiday by minutes or even days.
In some cases these differences can be used to localize not only what country, but where in a
country. The rules for this thesis do not encompass all cultures, nor do they account for phases
of the moon or observed sunrise or sunset, but they could. The rules are left to the imagination
of the analysts. Building these rules into the program would provide more flexibility and allow
researchers to test different temporal rules.

Another application might be rules for operational tempo. Operating norms of critical enemy
units could be helpful. For example, subordinate units often have to report their daily SITREP
earlier to higher echelon commands. Therefore, identifying when the lower echelon command
report might help in understanding the command’s location in a military hierarchy or alert ana-
lysts of abnormal behavior.

The data types used in the study where only small samples of different data domains. NPS has
a hard drive corpus of third world used drives. This corpus consists of several terabytes of data.
By using the rules it should be possible to categorize the location were the data was created
using only temporal data found on the drives (i.e., holiday activity for the different counties).
Some of the drives were collected from Spain and Mexico which have siestas. Rules created to
find this should be able to further increase the confidence of original area of creation.
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Another possible test would be to identify common inconsistencies of computer logs based on
location and time. Rules may help find changes in log data caused by the computer changing
the local time zone based on location. These changes in the logs could be tested on laptops to
see if temporal analysis can used to determine the most probable correct time thereby identifing
the computers correct location. This is an area of extreme interest in the fields of computer
security and forensics.

Yet another possibility would be to combine data collected from different sources (i.e., e-mail
timestamps, chat, Web surfing history, and installed programs) to predict future activity or to
classify a users persona (i.e., terrorist, hacker, criminal, lawyer, etc.) or uses of the machine.
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CHAPTER 6:
Conclusions

This paper served three valuable proposes. One, it tested the Poisson regression for rule based
data correlation. Two, it demonstrated a current capability to combine human intuition of tem-
poral events and the speed of computers. Finally, this thesis showed the utility of the RBI
methodology and gave possible areas of future research.

The results of the methodology are extensible and replicatable to other forms of regression
analysis, not just Poisson distributional data. Additionally, the methodology can be used as a
framework to explore different datasets, rules, and temporal granularity.
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APPENDIX A:
Time Rules Code

Listing A.1: Time Rules Code

# ! / u s r / b i n / p y t ho n
””” t i m e r u l e s . py :

T h i s module c o n t a i n s a l i s t o f t i m e r u l e s .
Each r u l e i s a f u n c t i o n t h a t t a k e s a py tho n t i m e o b j e c t and r e t u r n s
True ( i n r u l e ) or F a l s e ( n o t i n r u l e ) .

Des ign :

r u l e l i s t − an a r r a y t h a t has a l l o f t h e r u l e s
a p p l y r u l e s ( t v a l ) − a p p l i e s a l l o f t h e r u l e s and r e t u r n s an a r r a y o f
True / F a l s e v a l u e s a p p l y r u l e s t o c s v f i l e ( f i l e ) − r e a d s a c s v f i l e i n t h e
form ’ t imes tamp , c o u n t ’ and r e t u r n s an a r r a y o f e l e m e n t s , each i n t h e form :
[ t imes tamp , count , r1 , r2 , r3 . . . ]
”””

import d a t e t i m e
import t ime
import c a l e n d a r
import csv
import os
import s y s

# r u l e l i s t i s t h e a r r a y t h a t we w i l l use t o ho ld t h e i n s t a n c e s o f a l l t h e r u l e s
# t h a t are b e i n g a n a l y z e d
r u l e l i s t = [ ]

c l a s s TimeRule :
DESCRIPTION = ” A b s t r a c t r u l e C l a s s . ”
def i n R u l e ( s e l f , t v a l ) :

”””The d e f a u l t i n R u l e i s t h a t i t i s n e v e r i n t h e r u l e .
t v a l i s i n l o c a l t i m e . ”””
re turn F a l s e

def s t r ( s e l f ) :
re turn ”%s ” % ( s e l f . c l a s s . n a m e )

c l a s s Almanac ( TimeRule ) :
””” An almanac i s a r u l e which r e t u r n s t r u e i f t h e g i v e n day i s p a r t o f a
s e t . Days i s a l i s t o f d a t e t i m e . d a t e o b j e c t s . ”””
def i n i t ( s e l f , name , days , i g n o r e y e a r =True ) :

s e l f . name = name
s e l f . days = days
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s e l f . i g n o r e y e a r = i g n o r e y e a r
def i n R u l e ( s e l f , t v a l ) :

f o r d in s e l f . days :
i f t v a l . tm mon == d . month and t v a l . tm mday == d . day :

i f s e l f . i g n o r e y e a r : re turn True
i f t v a l . t m y e a r == d . y e a r : re turn True

re turn F a l s e
def s t r ( s e l f ) :

re turn ” Almanac(%s ) ” % ( s e l f . name )

from d a t e t i m e import d a t e

c l a s s Monday ( TimeRule ) :
””” I s True i f i t i s a Monday i n t h e Gregor ian Calendar ”””
def i n R u l e ( s e l f s e l f , t v a l ) :

re turn t v a l . tm wday == 0
r u l e l i s t . append ( Monday ( ) )

c l a s s Tuesday ( TimeRule ) :
””” I s True i f i t i s a Tuesday i n t h e Gregor ian Calendar ”””
def i n R u l e ( s e l f s e l f , t v a l ) :

re turn t v a l . tm wday == 1
r u l e l i s t . append ( Tuesday ( ) )

c l a s s Wednesday ( TimeRule ) :
””” I s True i f i t i s a Wednesday i n t h e Gregor ian Calendar ”””
def i n R u l e ( s e l f s e l f , t v a l ) :

re turn t v a l . tm wday == 2
r u l e l i s t . append ( Wednesday ( ) )

c l a s s Thursday ( TimeRule ) :
””” I s True i f i t i s a Thursday i n t h e Gregor ian Calendar ”””
def i n R u l e ( s e l f s e l f , t v a l ) :

re turn t v a l . tm wday == 3
r u l e l i s t . append ( Thursday ( ) )

c l a s s F r i d a y ( TimeRule ) :
””” I s True i f i t i s a Fr i da y i n t h e Gregor ian Calendar ”””
def i n R u l e ( s e l f s e l f , t v a l ) :

re turn t v a l . tm wday == 4
r u l e l i s t . append ( F r i d a y ( ) )

c l a s s S a t u r d a y ( TimeRule ) :
””” I s True i f i t i s a MoSaturdaynday i n t h e Gregor ian Calendar ”””
def i n R u l e ( s e l f s e l f , t v a l ) :

re turn t v a l . tm wday == 5
r u l e l i s t . append ( S a t u r d a y ( ) )

c l a s s Sunday ( TimeRule ) :
””” I s True i f i t i s a Sunday i n t h e Gregor ian Calendar ”””
def i n R u l e ( s e l f s e l f , t v a l ) :
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re turn t v a l . tm wday == 6
r u l e l i s t . append ( Sunday ( ) )

c l a s s J a n u a r y ( TimeRule ) :
””” I s True i f i t i s January ”””
def i n R u l e ( s e l f , t v a l ) :

re turn t v a l . tm mon == 1
r u l e l i s t . append ( J a n u a r y ( ) )

c l a s s F e b r u a r y ( TimeRule ) :
””” I s True i f i t i s February ”””
def i n R u l e ( s e l f , t v a l ) :

re turn t v a l . tm mon == 2
r u l e l i s t . append ( F e b r u a r y ( ) )

c l a s s March ( TimeRule ) :
””” I s True i f i t i s March ”””
def i n R u l e ( s e l f , t v a l ) :

re turn t v a l . tm mon == 3
r u l e l i s t . append ( March ( ) )

c l a s s A p r i l ( TimeRule ) :
””” I s True i f i t i s A p r i l ”””
def i n R u l e ( s e l f , t v a l ) :

re turn t v a l . tm mon == 4
r u l e l i s t . append ( A p r i l ( ) )

c l a s s May( TimeRule ) :
””” I s True i f i t i s May ”””
def i n R u l e ( s e l f , t v a l ) :

re turn t v a l . tm mon == 5
r u l e l i s t . append ( May ( ) )

c l a s s June ( TimeRule ) :
””” I s True i f i t i s June ”””
def i n R u l e ( s e l f , t v a l ) :

re turn t v a l . tm mon == 6
r u l e l i s t . append ( June ( ) )

c l a s s J u l y ( TimeRule ) :
””” I s True i f i t i s J u l y ”””
def i n R u l e ( s e l f , t v a l ) :

re turn t v a l . tm mon == 7
r u l e l i s t . append ( J u l y ( ) )

c l a s s August ( TimeRule ) :
””” I s True i f i t i s Augus t ”””
def i n R u l e ( s e l f , t v a l ) :

re turn t v a l . tm mon == 8
r u l e l i s t . append ( August ( ) )
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c l a s s September ( TimeRule ) :
””” I s True i f i t i s Sep tember ”””
def i n R u l e ( s e l f , t v a l ) :

re turn t v a l . tm mon == 9
r u l e l i s t . append ( September ( ) )

c l a s s Octobe r ( TimeRule ) :
””” I s True i f i t i s Oc tober ”””
def i n R u l e ( s e l f , t v a l ) :

re turn t v a l . tm mon == 10
r u l e l i s t . append ( Oc tobe r ( ) )

c l a s s November ( TimeRule ) :
””” I s True i f i t i s November ”””
def i n R u l e ( s e l f , t v a l ) :

re turn t v a l . tm mon == 1
r u l e l i s t . append ( November ( ) )

c l a s s December ( TimeRule ) :
””” I s True i f i t i s December ”””
def i n R u l e ( s e l f , t v a l ) :

re turn t v a l . tm mon == 1
r u l e l i s t . append ( December ( ) )

c l a s s WesternWeekday ( TimeRule ) :
””” Wes ternworkdays are Monday t h r o u g h Fr ida y ”””
def i n R u l e ( s e l f , t v a l ) :

re turn t v a l . tm wday in [ 0 , 1 , 2 , 3 , 4 ]
r u l e l i s t . append ( WesternWeekday ( ) )

c l a s s MuslimWeekday ( TimeRule ) :
””” MuslimWeekdays are Sunday t h r o u g h Thursday ”””
def i n R u l e ( s e l f , t v a l ) :

re turn t v a l . tm wday in [ 6 , 0 , 1 , 2 , 3 ]
r u l e l i s t . append ( MuslimWeekday ( ) )

c l a s s I s r a e l i W e e k d a y ( TimeRule ) :
””” I s r a e l i W e e k d a y s are Sunday t h r o u g h Thursday ”””
def i n R u l e ( s e l f , t v a l ) :

re turn t v a l . tm wday in [ 6 , 0 , 1 , 2 , 3 ]
r u l e l i s t . append ( I s r a e l i W e e k d a y ( ) )

c l a s s US NewYears ( TimeRule ) :
”””NewYears o c c u r s t h e f i r s t day o f e v e r y year ”””
def i n R u l e ( s e l f , t v a l ) :

re turn t v a l . tm yday == 1
r u l e l i s t . append ( US NewYears ( ) )

c l a s s US Mar t inLu the r ( TimeRule ) :
””” Mar t in L u t h e r o c c u r s on t h e t h i r d Monday i n January ”””
def i n R u l e ( s e l f , t v a l ) :
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re turn ( ( t v a l . tm mon == 1 and t v a l . tm wday == 0 and t v a l . tm yday in \
r a n g e ( 1 5 , 2 1 ) ) )

r u l e l i s t . append ( US Mar t inLu the r ( ) )

c l a s s US WashingtonBDay ( TimeRule ) :
””” Washington ’ s B i r t h d a y o c c u r s on t h e t h i r d Monday i n February ”””
def i n R u l e ( s e l f , t v a l ) :

re turn ( ( t v a l . tm mon == 2 and t v a l . tm wday == 0 and t v a l . tm mday in \
r a n g e ( 1 5 , 2 1 ) ) )

r u l e l i s t . append ( US WashingtonBDay ( ) )

c l a s s US MemorialDay ( TimeRule ) :
””” Memorial Day o c c u r e s on t h e l a s t Monday i n May ”””
def i n R u l e ( s e l f , t v a l ) :

re turn ( ( t v a l . tm mon == 5 and t v a l . tm wday == 0 and
( ( 3 1 − t v a l . tm mday)%7 == 0 ) ) )

r u l e l i s t . append ( US MemorialDay ( ) )

c l a s s US IndependanceDayObserved ( TimeRule ) :
””” I n d e p e n d e n c e Day o c c u r e s on J u l y 4 i f f a l l s on Sunday t h e n o b s e r v e d on
Monday i f i t f a l l s on S a t u r d a y t h e n i t i s o b s e r v e d on Fr ida y ”””
def i n R u l e ( s e l f , t v a l ) :

re turn ( ( t v a l . tm mon == 7 and t v a l . tm mday == 4 and t v a l . tm wday < 5)
or
( t v a l . tm mon == 7 and t v a l . tm mday == 3 and t v a l . tm wday == 4)
or
( t v a l . tm mon == 7 and t v a l . tm mday == 5 and t v a l . tm wday == 0 ) )

r u l e l i s t . append ( US IndependanceDayObserved ( ) )

c l a s s US LaborDay ( TimeRule ) :
””” Labor Day o c c u r e s on t h e f i r s t Monday i n Sep tember ”””
def i n R u l e ( s e l f , t v a l ) :

re turn ( ( t v a l . tm mon == 9 and t v a l . tm wday == 0 and t v a l . tm mday in \
r a n g e ( 1 , 7 ) ) )

r u l e l i s t . append ( US LaborDay ( ) )

c l a s s US ColumbusDay ( TimeRule ) :
””” Columbus Day o c c u r e s on t h e second Monday i n October ”””
def i n R u l e ( s e l f , t v a l ) :

re turn ( ( t v a l . tm mon == 10 and t v a l . tm wday == 0 and t v a l . tm mday in \
r a n g e ( 7 , 1 4 ) ) )

r u l e l i s t . append ( US ColumbusDay ( ) )

c l a s s US Vete r i ansDayObserved ( TimeRule ) :
””” V e t e r a n s Day o c c u r e s on November 11 t h ”””
def i n R u l e ( s e l f , t v a l ) :

re turn ( ( t v a l . tm mon == 11 and t v a l . tm mday == 11 and t v a l . tm wday < 5)
or
( t v a l . tm mon == 11 and t v a l . tm mday == 10 and t v a l . tm wday == 4)
or
( t v a l . tm mon == 11 and t v a l . tm mday == 12 and t v a l . tm wday == \
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0 ) )
r u l e l i s t . append ( US Vete r i ansDayObserved ( ) )

c l a s s US Thanksg iv ing ( TimeRule ) :
””” T h a n k s g i v i n g o c c u r e s on November 25 t h ”””
def i n R u l e ( s e l f , t v a l ) :

re turn ( ( t v a l . tm mon == 11 and t v a l . tm mday == 2 5 ) )
r u l e l i s t . append ( US Thanksg iv ing ( ) )

c l a s s US Chris tmasDayObserved ( TimeRule ) :
””” C h r i s t m a s Day o c c u r e s on December t h e 25 t h ”””
def i n R u l e ( s e l f , t v a l ) :

re turn ( ( t v a l . tm mon == 12 and t v a l . tm mday == 11 and t v a l . tm wday < 5)
or
( t v a l . tm mon == 12 and t v a l . tm mday == 10 and t v a l . tm wday == 4)
or
( t v a l . tm mon == 12 and t v a l . tm mday == 12 and t v a l . tm wday == \
0 ) )

r u l e l i s t . append ( US Chr is tmasDayObserved ( ) )

c l a s s US WorkDays ( TimeRule ) :
def i n i t ( s e l f ) :

s e l f . US HOLIDAY LIST = [ US NewYears ( ) , US Mar t i nLu the r ( ) ,
US WashingtonBDay ( ) , US MemorialDay ( ) , US IndependanceDayObserved ( ) ,
US LaborDay ( ) , US ColumbusDay ( ) , US Vete r i ansDayObserved ( ) ,
US Thanksg iv ing ( ) , US Chr is tmasDayObserved ( ) ]
s e l f .WEEKDAY RULE = WesternWeekday ( )

def i n R u l e ( s e l f , t v a l ) :
””” I t i s n o t a workday i f i t i s a US h o l i d a y
Go t h r o u g h t h e l i s t o f US h o l i d a y s and s e e i f any o f t h e r u l e s match .
I f so , r e t u r n f a l s e ”””
f o r r in s e l f . US HOLIDAY LIST :

i f r . i n R u l e ( t v a l )== True : re turn F a l s e
# I t i s a Workday i f t h e day i s a weekday
re turn s e l f .WEEKDAY RULE. i n R u l e ( t v a l )

r u l e l i s t . append ( US WorkDays ( ) )

c l a s s US BimonthlyPay ( TimeRule ) :
”””Pay i s on t h e 1 s t and 15 t h o f everymon th when 1 s t or 15 t h i s on work
day”””
def i n R u l e ( s e l f , t v a l ) :

re turn ( ( t v a l . tm yday == 1 and US WorkDays ( ) )
or
( t v a l . tm yday == 15 and US WorkDays ( ) ) )

r u l e l i s t . append ( US BimonthlyPay ( ) )

# Use t h e Almanc c l a s s t o c r e a t e a J e w i s h H o l i d a y s 1 9 9 9 o b j e c t .
# That o b j e c t w i l l imp lemen t t h e r u l e s !

J e w i s h H o l i d a y s 1 9 9 9 = Almanac ( ” Je wi sh H o l i d a y s 1999 ” ,
[ d a t e ( 1 9 9 9 , 2 , 1 ) , # T u B i s h v a t
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d a t e ( 1 9 9 9 , 3 , 2 ) , # Purim
d a t e ( 1 9 9 9 , 4 , 1 ) , # Pesach
d a t e ( 1 9 9 9 , 4 , 1 3 ) , # Yom HaShoah
d a t e ( 1 9 9 9 , 4 , 2 1 ) , # Yom HaAtzmaut
d a t e ( 1 9 9 9 , 5 , 4 ) , # Lag BOmer
d a t e ( 1 9 9 9 , 5 , 2 1 ) , # Shavuo t
d a t e ( 1 9 9 9 , 7 , 2 2 ) , # Tisha BAv
d a t e ( 1 9 9 9 , 9 , 1 1 ) , # Rosh HaShannah
d a t e ( 1 9 9 9 , 9 , 2 0 ) , # Yom Kippur
d a t e ( 1 9 9 9 , 9 , 2 5 ) , # S u k k o t
d a t e ( 1 9 9 9 , 1 0 , 2 ) , # S h e m i n i A t z e r e t
d a t e ( 1 9 9 9 , 1 0 , 3 ) , # S imha t Torah
d a t e ( 1 9 9 9 , 1 2 , 4 ) # Chanukah
] , True )

c l a s s I s r a e l i W o r k D a y s ( TimeRule ) :
””” R e t ur n ”True” i f i t i s a day on which somebody works i n I s r a e l . ”””
def i n i t ( s e l f ) :

s e l f . I s r a e l H o l i d a y R u l e = J e w i s h H o l i d a y s 1 9 9 9
s e l f .WEEKDAY RULE = I s r a e l i W e e k d a y ( )

def i n R u l e ( s e l f , t v a l ) :
# A day i s an i s r a e l workday i f i t i s workday and n o t a h o l i d a y
re turn s e l f .WEEKDAY RULE. i n R u l e ( t v a l ) and \
s e l f . I s r a e l H o l i d a y R u l e . i n R u l e ( t v a l )== F a l s e

r u l e l i s t . append ( I s r a e l i W o r k D a y s ( ) )

# Use t h e Almanc c l a s s t o c r e a t e a M u s l i m H o l i d a y s 1 9 9 9 o b j e c t .
# That o b j e c t w i l l imp lemen t t h e r u l e s !

Musl im Hol idays 1999 = Almanac ( ” Muslim H o l i d a y s 1999 ” ,
[ d a t e ( 1 9 9 9 , 1 , 1 9 ) , # Id al−F i t r
d a t e ( 1 9 9 9 , 3 , 2 8 ) , # Id al−Adha
d a t e ( 1 9 9 9 , 4 , 1 7 ) , # New Years
d a t e ( 1 9 9 9 , 4 , 2 6 ) , # Ashura
d a t e ( 1 9 9 9 , 6 , 2 6 ) , # Mawlid 1
d a t e ( 1 9 9 9 , 1 2 , 9 ) # Ramadan
] , True )

c l a s s Muslim WorkDays ( TimeRule ) :
””” R e t ur n ”True” i f i t i s a day on which somebody works i n Muslim c o u n t r y . ”””
def i n i t ( s e l f ) :

s e l f . Mus l im Hol iday Ru le = Mus l im Hol idays 1999
s e l f .WEEKDAY RULE = MuslimWeekday ( )

def i n R u l e ( s e l f , t v a l ) :
# A day i s an Muslim workday i f i t i s workday and n o t a h o l i d a y
re turn s e l f .WEEKDAY RULE. i n R u l e ( t v a l ) and \
s e l f . Mus l im Hol iday Ru le . i n R u l e ( t v a l )== F a l s e

r u l e l i s t . append ( Muslim WorkDays ( ) )

import d s t r u l e s
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c l a s s DSTRule ( TimeRule ) :
””” T h i s r u l e r e t u r n s TRUE i f t h e r e i s a change t o DST or ST f o r a g i v e n
t i m e z o n e on a g i v e n day . ”””
def i n i t ( s e l f , t i m e z o n e ) :

s e l f . t i m e z o n e = t i m e z o n e
def i n R u l e ( s e l f , t v a l ) :

re turn d s t r u l e s . i s c h a n g e d a y ( s e l f . t imezone , t v a l . tm year , t v a l . tm mon ,\
t v a l . tm mday )

def s t r ( s e l f ) :
re turn ” DSTRule(%s ) ” % s e l f . t i m e z o n e

# Add a l l o f t h e r u l e s t h a t we haven ’ t s een b e f o r e
s e e n i d s = s e t ( )
f o r TZ in d s t r u l e s . t i m e z o n e s ( ) :

r u l e s t r = s t r ( d s t r u l e s . t i m e z o n e i d ( TZ ) )
i f r u l e s t r not in s e e n i d s :

r u l e l i s t . append ( DSTRule ( TZ ) )
s e e n i d s . add ( r u l e s t r )

# Our handy t ime−p a r s e r . Can p a r s e any t i m e ! R e a l l y !
t i m e f o r m a t l i s t = [

”%Y−%m−%d %H:%M:%S” ,
”%Y%m%dT%H%M%SZ” ,
”%Y−%m−%d−%H:%M:%S” ,
”%m/%d/%y ” ]

def p a r s e t i m e ( s ) :
””” Parse t h e s t r i n g s and r e t u r n a s t r u c t t i m e . ”””
f o r f in t i m e f o r m a t l i s t :

t r y :
re turn t ime . s t r p t i m e ( s , f )

e xc ep t V a l u e E r r o r :
c o n t i nu e

def a p p l y r u l e s ( t v a l ) :
re turn [ r . i n R u l e ( t v a l ) f o r r in r u l e l i s t ]

i f n a m e ==” m a i n ” :
from o p t p a r s e import O p t i o n P a r s e r
g l o b a l o p t i o n s

p a r s e r = O p t i o n P a r s e r ( )
p a r s e r . u sage = ” usage : %prog [ o p t i o n s ] < i n p u t f i l e >”
p a r s e r . a d d o p t i o n ( ”− l ” , ”−− l i s t ” , h e l p =” L i s t r u l e s ” , a c t i o n =” s t o r e t r u e ” )
p a r s e r . a d d o p t i o n ( ”− t ” , ”−− t e s t ” , h e l p =” T e s t r u l e s wi th a t ime ” ,\
a c t i o n =” s t o r e t r u e ” )
p a r s e r . a d d o p t i o n ( ”−s ” , ”−−show ” ,\
h e l p =” p r i n t t h e t ime r u l e i n f o r m a t i o n f o r a t i m e z o n e ” )
p a r s e r . a d d o p t i o n ( ”−−t e x ” , h e l p =” o u t p u t r u l e s i n LaTeX f o r m a t ” ,\
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a c t i o n =” s t o r e t r u e ” )
( o p t i o n s , a r g s ) = p a r s e r . p a r s e a r g s ( )

i f o p t i o n s . show :
p r i n t d s t r u l e s . t i m e z o n e i d ( o p t i o n s . show )
e x i t ( 0 )

i f o p t i o n s . t e x :
p r i n t ”\\ d e f \\ T o t a l R u l e s{%d}\n ” % l e n ( r u l e l i s t )
p r i n t ”\\ d e f \\AllMyRules{”
f o r r in r u l e l i s t :

p r i n t ”\\myrule{%s } ” % ( s t r ( r ) . r e p l a c e ( ” ” , ”\\ ” ) )
p r i n t ”}”
e x i t ( 0 )

i f o p t i o n s . l i s t :
p r i n t ” There a r e %d r u l e s : ” % ( l e n ( r u l e l i s t ) )
f o r r in r u l e l i s t :

p r i n t r
p r i n t
e x i t ( 0 )

i f o p t i o n s . t e s t :
t v a l = p a r s e t i m e ( o p t i o n s . t e s t )
p r i n t o p t i o n s . t e s t , ”=” , t v a l
r e s u l t = a p p l y r u l e s ( t v a l )
f o r i in r a n g e ( l e n ( r e s u l t ) ) :

p r i n t r u l e l i s t [ i ] , r e s u l t [ i ]
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APPENDIX B:
Timeline Code

Listing B.1: Timeline Code

# To change t h i s t e m p l a t e , choose T o o l s | T e m p l a t e s
# and open t h e t e m p l a t e i n t h e e d i t o r .

# P l e a s e read h t t p : / / seehuhn . de / pages / p d a t e

a u t h o r =”LCDR K r i s Kea r ton ”
d a t e =” $Dec 3 , 2009 2 : 5 1 : 3 4 PM$”

from d a t e t i m e import d a t e t i m e , t i m e d e l t a , d a t e
import csv
import t ime
import os

def d a t e t i m e I t e r a t o r ( f r o m d a t e = d a t e t i m e . now ( ) , t o d a t e =None ) :
whi le t o d a t e i s None or f r o m d a t e < t o d a t e :

y i e l d f r o m d a t e
f r o m d a t e = f r o m d a t e + t i m e d e l t a ( days = 1)

re turn

def d i c t t o c o u n t ( d ) :
keys = d . keys ( )
keys . s o r t ( )
r e t = [ ]
f o r d a t e in keys :

r e t . append ( ( da t e , d [ d a t e ] ) )
re turn r e t

def r e a d a c t s ( fname ) :
”””Read t h e ACTS d a t a b a s e from a f i l e and r e t u r n a d i c t i o n a r y
where t h e key i s t h e DATE and t h e v a l u e i s t h e c o u n t . ”””

r e t = [ ]
f o r l i n e in csv . r e a d e r ( open ( fname , ”U” ) ) :

when = d a t e t i m e . s t r p t i m e ( l i n e [ 0 ] , ”%m/%d/%y ” )
c o u n t = l i n e [ 1 ]
r e t . append ( ( when , c o u n t ) )

re turn r e t

def r e a d p h o n e c e n t e r ( fname ) :
h e a d i n g s = None
t a l l y = {} # t a l l y by d a t e
f o r l i n e in csv . r e a d e r ( open ( fname , ”U” ) , d e l i m i t e r =”\ t ” ) :
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i f not h e a d i n g s :
h e a d i n g s = l i n e # g e t t h e h e a d i n g s
c o n t i nu e

t r y :
# The 5 t h f i e l d i s t h e d a t e / t i m e
when = d a t e t i m e . s t r p t i m e ( l i n e [ 5 ] , ”%y%m%d ” ) # j u s t use t h e d a t e

e xc ep t V a l u e E r r o r :
# In one case , t h e r e were s p a c e s i n s t e a d o f a tab , so grab t h e
# p r e v i o u s f i e l d
when = d a t e t i m e . s t r p t i m e ( l i n e [ 4 ] , ”%y%m%d ” ) # j u s t use t h e d a t e

t r y :
t a l l y [ when ] += 1 # i n c r e m e n t t h e c o u n t f o r t h a t d a t e

e xc ep t KeyError :
t a l l y [ when ] = 1

re turn d i c t t o c o u n t ( t a l l y )

def r e a d g t d ( fname ) :
t a l l y = {} # t a l l y by d a t e
f o r l i n e in csv . r e a d e r ( open ( fname , ”U” ) ) :

i f l i n e [3 ]== ” ” :
c o n t i nu e # no day i n d a t a b a s e

y e a r = i n t ( l i n e [ 1 ] )
month = i n t ( l i n e [ 2 ] )
day = i n t ( l i n e [ 3 ] )
i f month ==0: month= i n t ( l i n e [ 0 ] [ 4 : 6 ] )
i f day ==0: day= i n t ( l i n e [ 0 ] [ 6 : 8 ] )
i f y e a r ==0 or month==0 or day ==0:

c o n t in u e
t r y :

when = d a t e t i m e ( year , month , day )
e xc ep t V a l u e E r r o r :

p r i n t ” bad l i n e : ” , l i n e
c o n t i nu e

t r y :
t a l l y [ when ] += 1 # i n c r e m e n t t h e c o u n t f o r t h a t d a t e

e xc ep t KeyError :
t a l l y [ when ] = 1

re turn d i c t t o c o u n t ( t a l l y )

def m a k e z o n e a r r a y ( ) :
””” R e t ur n a l i s t o f a l l t h e t i m e z o n e s ”””
p r i n t ”make zone a r r a y ”
t i m e z o n e d i r = [ ]

t z = csv . r e a d e r ( open ( ” d a t a / t z z o n e o n l y . t a b ” , ”U” ) , d e l i m i t e r =”\ t ” )
f o r zone in t z :

t i m e z o n e d i r . append ( zone [ 2 ] )

re turn t i m e z o n e d i r
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def c o m p a r e t o d s t ( d a t e s i n , z o n e a r r a y ) :
p r i n t ” e n t e r i n g c o m p a r e t o d i s t ”
f l a g = 0
z o n e d i c t = {}
c o u n t = 0
zonetemp = ” Empty ”

f o r zone in z o n e a r r a y :
os . e n v i r o n [ ’TZ ’ ] = zone
t ime . t z s e t ( )

f o r y e a r in r a n g e ( 1 9 9 9 , 2 0 0 4 ) :
f o r month in r a n g e ( 1 , 1 3 ) :

f o r day in r a n g e ( 1 , 2 8 ) : # l e f t o u t 29 , 30 , and 31 as d a t e s as s t d
# happens i n mid d l e o f month

f o r hour in r a n g e ( 0 , 2 4 ) :
d s t f l a g = t ime . l o c a l t i m e ( t ime . mktime ( ( year , month ,\
day , hour , 0 , 0 , 0 , 0 , −1 ) ) )
temp = d s t f l a g [ 8 ]
i f temp != f l a g :

t = t ime . s t r f t i m e ( ”%Y−%m−%d ” , d s t f l a g )
f o r i d x in r a n g e ( 0 , l e n ( d a t e s i n ) ) :

i f d a t e s i n [ i d x ]== t :
c o u n t = c o u n t + 1 # adds o n l y t i m e z o n e s w i t h
#5 or more h i t s
i f c o u n t > 4 :

z o n e d i c t [ zone ] = c o u n t
f l a g = temp

c o u n t = 0 # r e s e t s c o u n t a f t e r each zone
p r i n t z o n e d i c t
zone = zonetemp

re turn z o n e d i c t

def e v a l r u l e ( r u l e , e v e n t A r r a y ) :
””” Given a r u l e , compute t h e number o f e v e n t s t h a t match t h e r u l e and t h e
number t h a t don ’ t . ”””
r u l e i n = 0
r u l e o u t = 0
f o r ( day , c o u n t ) in e v e n t A r r a y :

i f r u l e . i n R u l e ( day ) :
r u l e i n += c o u n t

e l s e :
r u l e o u t += c o u n t

p r i n t r u l e , ” i n : ” , r u l e i n , ” o u t : ” , r u l e o u t

i f n a m e == ” m a i n ” :

””” s t a r t s he re ”””
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”””
# v a l s = r e a d a c t s (” da ta / a c t s c a l l s 9 9 0 8 . c s v ”)
# v a l s = r e a d p h o n e c e n t e r (” da ta / b a n k p h o n e c e n t e r 9 9 . t x t ”)
v a l s = r e a d g t d (” da ta / g l o b a l t e r r o r i s m d b 0 5 0 9 d i s t . c s v ”)
d i c t 1 9 9 9 = {}
e v e n t A r r a y 1 9 9 9 = f i l t e r ( lambda x : x [ 0 ] . year ==1999 , v a l s )
f o r ( day , c o u n t ) i n e v e n t A r r a y 1 9 9 9 :

d i c t 1 9 9 9 [ day . d a t e ( ) ] = c o u n t

i m p o r t t i m e r u l e s

a r r a y W i t h T i m e T u p l e s = [ ]
p o i s s o n A r r a y = [ ]

t i m e l i n e d a t a = c s v . w r i t e r ( open (” g t d . c s v ” , ”wb ” ) )

rows = [ ]
row = [”Day” ,” Count ”]
f o r r u l e i n t i m e r u l e s . r u l e l i s t :

row . append ( s t r ( r u l e ) )

rows . append ( row )
# Genera te a l i s t o f a l l t h e rows
f o r day i n d a t e t i m e I t e r a t o r ( d a t e ( 1 9 9 9 , 1 , 1 ) , d a t e ( 2 0 0 0 , 1 , 1 ) ) :

c o u n t = d i c t 1 9 9 9 . g e t ( day , 0 )
a r r a y W i t h T i m e T u p l e s . append ( ( day . t i m e t u p l e ( ) , c o u n t ) )

row = [ day , c o u n t ]

f o r r u l e i n t i m e r u l e s . r u l e l i s t :
i f r u l e . i n R u l e ( day . t i m e t u p l e ( ) ) :

row . append ( 1 )
e l s e :

row . append ( 0 )

rows . append ( row )

# Remove d u p l i c a t e columns
# T h i s f u n c t i o n t u r n s any column i n t o a s t r i n g
d e f c o l u m n 2 s t r i n g ( co l number ) :

c o l = [ ]
f o r row i n rows [ 1 : ] :

c o l . append ( s t r ( row [ co l number ] ) )
r e t u r n ”−”. j o i n ( c o l )

# Now we are go ing t o make c l e a n r o w s , which i s a l l o f t h e rows
# w i t h o u t d u p l i c a t e columns
max rows = l e n ( rows )
max columns = l e n ( rows [ 0 ] )

new rows = [ ]
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f o r i i n range ( 0 , max rows ) :
new rows . append ( [ ] )

s e e n c o l u m n s = s e t ( )
f o r column number i n range ( 0 , max columns ) :

c o l u m n s t r i n g = c o l u m n 2 s t r i n g ( column number )
i f c o l u m n s t r i n g n o t i n s e e n c o l u m n s :

# copy t h i s column over
f o r rownumber i n range ( 0 , l e n ( rows ) ) :

new rows [ rownumber ] . append ( rows [ rownumber ] [ column number ] )
s e e n c o l u m n s . add ( c o l u m n s t r i n g )

# Now w r i t e o u t t h e c l e a n e d t a b l e
f o r row i n new rows :

t i m e l i n e d a t a . w r i t e r o w ( row )
”””
””” ends here ”””

””” T h i s s c t i o n i n t e r f a c e s w i t h R and c a l c u l a t e s t h e P o i s s o n r e g r e s s i o n and
b u i l d s t h e L a t e x t a b l e ”””
from rpy2 . r o b j e c t s import r

r ( ’p<−r e a d . t a b l e ( ” / Use r s / p o s i t i v e f o r c e 1 / Documents / O f f i c e \ P r o j e c t s / T h e s i s /\
T i m e l i n e 2 / t i m e l i n e / g t d . csv ” , sep = ” , ” , h e a d e r = TRUE) ’ )
r ( ’ a t t a c h ( p ) ’ )
names = r ( ’ names ( p ) ’ )
p r i n t names
summaryArray = [ ]

”””ALL RULES ONE AT A TIME”””

f o r i in r a n g e ( 2 , l e n ( names ) ) :
f i r s t = ” r ( ’m1<−glm ( Count ˜ ”
l a s t = ” , f a m i l y = p o i s s o n ) ’ ) ”
r ( ’m1<−glm ( Count ˜ ’+names [ i ]+ ’ , f a m i l y = p o i s s o n ) ’ )
r ( ’ l i b r a r y ( x t a b l e ) ’ )
o u t = r ( ’x<−x t a b l e (m1) ’ )
summaryArray . append ( s t r ( r ( ’x<−x t a b l e (m1) ’ ) ) )
p r i n t o u t
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